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Abstract

We formulate the boundary value problem of traction for inhomogeneous anisotropic elastic materials in terms of
stresses following the method introduced by Pobedria and apply it to spherically anisotropic materials. An example of
spherically symmetric deformation of spherically uniform anisotropic materials is presented.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

This paper illustrates the stress formulation for linear elastic inhomogeneous anisotropic solids in the
particular case of spherical uniform anisotropy. Recently, inhomogenecous materials have attracted interest
due to the wide applicability of functionally graded materials (FGM), which are characterized by a micro-
scale that is spatially variable on a macroscale. Inhomogeneous materials exhibit interesting physical prop-
erties such as those observed in particular examples of radially dependent isotropic and spherically uniform
anisotropic materials by Horgan and Chan (1999a,b), Horgan and Baxter (1996) and Ting (1999). These
unexpected properties are that the hoop stress in a spherical shell may not achieve its maximum on the inner
boundary and the stresses in an infinite body with a traction-free spherical cavity cannot be obtained as a
limit of those of a spherical shell. It was observed that, for a solid sphere, cavitation occurs in the center
even for the slightest degree anisotropy.
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The above solutions were obtained by using the displacement formulation of the boundary value problem
of traction. Problems of elasticity can be posed in terms of displacement or stresses. The displacement for-
mulation gives well-defined boundary value problems. This is the main reason it is used by applied mathe-
maticians and numerical analysts. However, convergence of numerical algorithms is worse if one is interested
in the approximation of the derivatives of the displacement field. Thus, on practice the determination of the
stress field leads to a loss of numerical accuracy. On the other hand, a well-defined stress formulation is not
obvious. In 3D case the stresses satisfy nine equations in the interior of the body (three equations of equi-
librium and six equations following from the compatibility of strains) and only three boundary conditions.

A well-posed formulation in terms of stresses for 3D problems with given traction was proposed by
Pobedria (1980, 1979). He observed that it is sufficient to use the equilibrium equations only as boundary
conditions. That gives six boundary conditions for the six equations in the body. The equivalence of the
displacement and stress formulation was further studied by Kucher et al. (2004), while Li et al. (in press),
further refined the theory and obtained new conservation laws based on the stress formulation exploiting
the symmetries of the compatibility equations.

In this paper we illustrate the stress method by considering the spherically symmetric problem for spher-
ically uniform anisotropic elastic solids. The solution of this problem in displacement form can be found in
the book of Lekhnitskii (1963); some properties of this solution were recently analyzed by Horgan and Bax-
ter (1996) and Ting (1999) by the displacement methods.

2. Displacement and stress formulation of inhomogeneous elastic problems with given boundary traction

Consider the inhomogeneous elastic material with constitutive relation
6= C(x,¢), (2.1)

where ¢ is the Cauchy stress tensor, ¢ is the tensor of linear deformation

1
& = 7 (uiy + w0). (2.2)
Then the displacement formulation of the problem of traction is
Cijj(x,8(u(x))) = —F; in Q, (2.3)
Cy(x,e(u(x)))n; = 1; on A, (2.4)

where F is a vector of the body forces, t is the traction vector at the boundary 0Q with outward normal n.
Assume that the constitutive relation (2.1) can be inverted

¢ =S(x,0), (2.5)

Then the compatibility of the linear strain, equilibrium in the domain and the traction boundary condi-
tion take, respectively, the following form

AS,‘/(X, O') + Skkﬂ,‘j(x, O') — S,'qu'(X, O') — Sjkﬂk,‘(x,o') =0 in Q. (26)
Oik k +Fl =0 in Q, (27)
gy = t; on oQ (28)

Thus, one has 9 equations in Q and only 3 boundary conditions on the boundary 0Q.
We develop below the formulation of a well-defined boundary value problem of traction for the stress
tensor—as introduced in Pobedria (1979)—to inhomogeneous elastic solids. The equations in the domain are
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ASij(X7 0') + Skk,ij(X7 0') - Sik,kj(xv 0') - Sjk.ki(x7 O') + Zij(Skl,kl(X7 0') - ASkk(Xa 0'))
+R;j(x,Q(F,0)) + (Z;; — 0;;))Rix(x,Q(F,6)) =0 in Q. (2.9)

where Z is a constant tensor, components of the tensor Q are the first order derivatives of the left hand side
of the equilibrium equation defined by

1
ii = (qu + qj,i)?
q; = Oi + Fi

and R is a symmetric tensor function. Six boundary conditions are defined by
Oikk = _Fi on aQ, (210)
o = t; on aQ, (211)

It is easy to see that if the tensor function R satisfies the condition R;(x,0) =0, any solution of Egs.
(2.6)—(2.8) is a solution of Pobedria’s system (2.9)—(2.11).

On the other hand, under additional assumptions on R the converse is also true. Indeed, taking the trace
and divergence of Eq. (2.9) we get

(2 — Zkk)(ASkk(X, O') — Sk/,kl(xa 0')) — Rmm(X, Q(F7 O')) = 0 in Q, (212)
(057 — Zij) (ASw(x, 6) — Suu(X,6)) — Run(x,Q(F,0)) ; + Ras(x, Q(F,0)) =0 in Q (2.13)
Assuming Z;; #2, from (2.12) and (2.13) follows

Riux(x,Q(F,6) =0 in Q (2.14)

Eq. (2.14) together with the boundary condition (2.10) give the boundary value problem for the vector
field q.

1 .
Rik,k (X, E (Vq + VqT)) =0 in Q. (215)

¢g=0 on 0Q, (2.16)
If the boundary value problem (2.15) and (2.16) has a unique solution
g=in Q

then the equilibrium in the domain (2.7) holds and substituting (2.7) and (2.12) into (2.9) one obtains (2.6).
For example, the system (2.15), (2.16) has a unique solution in the case

Ru(x,Q)0y = 0 or Ry(x,Q)0, < 0 and Ry(x,Q)0, =0 if and only if Q =0.

3. The problem of traction for spherically uniform anisotropic linear elastic solids in terms of stresses

The constitutive equation for spherically uniform anisotropic linear elastic solid is (Ting, 1999)
6= Ceg, (3.1)
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where

T
o = (Tﬂ’ﬂ T005 Topgs Theps Tors Tr()) )

T
&= (8)‘r7 €005 €pp s 286(/); 28q¢r7 28r9) ’

and C is a positive definite constant symmetric 6 X 6 matrix.
Note that for such materials the constitutive laws (2.1) and (2.5) can be written in tensor form as

0;(x) = Cyj(x,8) = Cijua <|%) & (X), (3.2)
&j(X) = Siy(x, &) = Syu <%> a1 (X)- (3.3)

In Eq. (2.6) we can set
Rij(x,Q) = M(Q;; + 20y

3.4
Z,‘j = Zé,'j, ( )
where the constant parameters M, z, a satisfy the inequalities
2
M £0, z;ég, -l <oa< 400 (3.5)

in order for the systems (2.6), (2.7), (2.8) and (2.9), (2.10), (2.11) to be equivalent.

4. Spherically symmetric deformations for spherically uniform anisotropic linear elastic solids

The general form of the compliance matrix in (3.1) that allows spherically symmetric deformation is
(Ting, 1999)

C= . (4.1)

For spherically symmetric deformations the stress and strain tensors are defined by only two scalar func-
tions depending on the radius

XiXj

0,(x) = f(r)o, + g(r) 2 (4.2)

XiX;
where
f = Tpg = T(p(,/ﬂ g =Ty — T(p(pa

F=¢tp==¢p, G==&r— =&
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Hooke’s law (3.1) and (4.1) gives

<f> _ < Co+Cpn+Cxy Ch ><F) (4.4)
g Ci+Cn—Cp—Cyxn Cip—Cp/\G
Due to the positive definiteness of the matrix Cin (4.1) the constant coefficients entering (4.4) satisfy the
system of inequalities
Cy» >0,
C3, —C3, >0,
(Cyp — C23)[C11(Cap + Co3) — 2C?2J > 0,

which can be reduced to

Cyp+Cy>0 (45)
Cy—Cy >0 (46)
Ci1(Cy + Cy3) —2C3, >0 (4.7)

Substituting the tensors (4.2) and (4.3) into Eq. (2.9) we obtain the system of two second ordinary dif-
ferential equations for fand g

wo(;)-()

where
R(D) D*—2D —-D+2 —|—< 0 0 ) ( Cn+Cn+Cxy Ci )1
= zZ
D*+2D —-D-2 —2D*>—2D 2D+2 Cii+C—Cpn—Cys Cy—Ch
v 2D* —4D 2D* -8
(2u+ 1)D* + (20 +3)D (200 + 1)D? + (60 + 5)D + (4o +6) )
d
D:I"a.

The characteristic polynomial of the system (4.8) is

20+ 1)M(3z = 2)
Ciu(n =21 +7)
where y and 5 are material parameters as introduced in Ting (1999)
y:C22+C23*C12 ﬂ:@-
Cn ’ Cn
Since the parameters M, z, o are chosen to satisfy inequalities (3.5) the numerator in the right hand side

of (4.9) does not vanish. The denominator is not equal to zero due to the inequalities (4.5), (4.6), (4.7).
The general solution of the system (4.8) is

detR(D) = (D—2)(D+ 1)(D*+3D+2—2y), (4.9)

(fEr; ) = A1771X1 —|— A2r2X2 + A3r<71+3k)/2X3 + A4X4r<7173k)/2a (410)
g\r

where A4, A,, A3, A4 are arbitrary constants,
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32C11Mﬂ2 + 77(8 — 16C11M) — (—1 + 9k2)(—1 + 2C11M)>
1+ 8y — 9k> 4+ 2C M ((1 — 4n)* — 9K?) ’

—1 4327+ 9k* — 2C ;M ((1 — 4i?) — 9K*) (—1 + 3k))
25 — 160 — 9> + CuM((1 — 4n)* — 9K*) (=1 +3k) )’

(
(
(—1+3k)7
(

-3+ 3k
1 -3k
3+43k)’

k:%(l +8y)'72.

X
X,
X;
X,

We may note here that the general solution depends on the parameter M. Eq. (2.9) on their own do not
give solutions of elasticity problems and one has to take into account the boundary conditions (2.10).

For example, consider a spherical shell Ry <r < R, under a uniform internal and external pressure.
Then, together with the boundary conditions of traction

0, (X)n;(X)],_g, = —pymi(x)

05i(X)n;(X)|,_g, = —pani(X)

that take the form
(f"'g)'r:Rl =P (4.11)
(f +8)lier, = —P2 (4.12)

one imposes equilibrium at the boundary (2.10) that in the case of a spherically symmetric deformation can
be written as

! ! 2
<f +g +—g)
r
=0

! / 2
<f +g+ —g)
r r=Ry
Substituting (4.10) into the boundary conditions (4.11), (4.12), (4.13), (4.14) we obtain the values of the

constants Ay, A,, Az, Aa.
The solution is

Ay =4, =0,

=0

r=R

(4.13)

)

(4.14)

)

3(1+k)/2 3(1+k)/2
As :Psz( / *PlRl( )/
T AR R
3(1+k)/2 3(1+k)/2
A4:P2R?kRz( / _P1R1< )/ ng

4(R¥F — R
Then the stresses are given by the formulae
g'rt — g R (R g RF — gt (R
R -RE <r) TP g <r> 7
on=f+g=—p, rzk%Ri/; (R2> 3(1+k)/2 . % <Rl>3(1+k)/2,

Ry — Ry R — Ry

where ¢* = 1 (1 + 3k), which are in agreement with whose in Lekhnitskii (1963) and Ting (1999).

0pg9p = Opp = f = —pD»

r r
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5. Conclusion

We have applied the formulation of the boundary value problem in terms of stresses in 3D to inhomo-
geneous anisotropic elastic solids, specifically spherically uniform anisotropic solids and solved an example
for a spherical shell. By this method the stresses are obtained directly without the necessity of differentiation
of the displacements as in the standard displacement formulation of 3D boundary value problems of
elasticity.

References

Horgan, C.O., Chan, A.M., 1999a. The pressurized hollow cylinder or disk problem for functionally graded isotropic linearly elastic
materials. J. Elasticity 55, 43-59.

Horgan, C.O., Chan, A.M., 1999b. The stress response of functionally graded isotropic linearly elastic rotating disks. J. Elasticity 55,
219-230.

Horgan, C.O., Baxter, S.C., 1996. Effects of curvilinear anisotropy on radially symmetric stresses in anisotropic linearly elastic solids.
J. Elasticity 42, 31-48.

Kucher, V.A., Markenscoff, X., Paukshto, M.V., 2004. Some properties of the boundary value problem of linear elasticity in terms of
stresses. J. Elasticity 74, 135-145.

Lekhnitskii, S.G., 1963. Theory of Elasticity of an Anisotropic Elastic Body. Holden-Day, San-Francisco.

Li, S., Gupta, A., Markenscoff, X., in press. Conservation laws of linear elasticity in stress formulation. Proc. Roy. Soc. London.

Pobedria, B.E., 1980. A new formulation of the problem of the mechanics of a deformable solid in stresses. (Russian) Dokl. Akad.
Nauk. SSSR 253 (2), 295-297.

Pobedria, B.E., 1979. Some general theorems of the mechanics of a deformable solid. (Russian) Prikl. Mat. Mekh 43 (3), 531-541.

Ting, T.C.T., 1999. The remarkable nature of radially symmetric deformation of spherically uniform linear anisotropic elastic solids.
J. Elasticity 53, 47-64.



	Stress formulation in 3D elasticity and application to spherically uniform anisotropic solids
	Introduction
	Displacement and stress formulation of inhomogeneous elastic problems with given boundary traction
	The problem of traction for spherically uniform anisotropic linear elastic solids in terms of stresses
	Spherically symmetric deformations for spherically uniform anisotropic linear elastic solids
	Conclusion
	References


